
Chapters
6 and 8
Notes

ICS-104

By:Naif Alqahtani
BBB twitter : @NaifAlqahtani
EBB youtube.com/.MWNLhT

Lists:

BBB twitter : @NaifAlqahtani mama twitter : @NaifAlqahtani
EBB youtube.com/MWNLhT

'

868 youtube.com/.MWNLhT

DO

• Recall in my chapter 2 notes, I used the following
illustration to represent a variable :
A variable

i
A-

go

six

• List are essensially a bunch of variable bones

right next each other and packed
together

list : m.

- To h 121514 '
s 'll f s

'

! -
• each box inside a list is called an element

.
Element are

exactly like variables
.

•This is how you can create a list in python to

store multiple variables :

numbers = [8,
" ten"

,
3

,
-5

,

"Zero"
,
4.6]

Scan to try code • To access each variable individually we use brackets
.

print(numbers[03)
→ 8

print(numbers[4])
→ Zero

print(numbers[53)
→ 4.6

How to use: Last page
• Remember : Counting starts from O

• Our list has a length of 6 . If you try to index using any

integer outside the range @she 5) you will get an error.
• You can use the Len function to find the length of a

List
.

FEB youtube.com/.MWNLhT

Traversing List Elements:

BBB twitter : @NaifAlqahtani BBB twitter : @NaifAlqahtani

EBB youtube.com/MWNLhT EBB youtube.com/.MWNLhT

•

• Recall that in strings , there were two ways to

traverse all elements in a string [see ch4 Notes p: 4,5]

• The same exact methods work with strings.

1
. loop i throng a range of numbers, use i to index list

2
. Use " in

"

with a list name to loop through elements .

Scan to try code

→notice the index

How to use: Last Page

↳ i is already set to element

\

ABB twitter :@NaifAIqahtaniEBBYoutube.com1.MWNLLT

List Operations:

BBB twitter : @NaifAlqahtani mama twitter : @NaifAlqahtani
EEG youtube.com/MWNLhT EEG youtube.com/.MWNLhT

•

• Use
. append(element) to add element to end of List

• Use . insert (index, element) to add element at specified
index

• Use
• index (element) to find the index value of element.

• Use
• pop (index) to remove element at given index

.
Default

is to remove last element

• Use
. remove (element) to remove element by value .

• Use t between two Lists to concatenate them together.
• Use * to concatenate the same list multiple times .

• You can compare two Lists using == or !=.

• Comparing two Lists is True when both lists contain the

same exact elements in the correct order
.

• Here is a common mistake when copying a List

This does NOT copy

List [3 ,
4
,
5] the List. This only

← references the List with

another Name
.

Copy = List This means that Both

copy and List are
Linked together.

• Instead, to copy a List, we use the list C) function .

This copies all elements

Copy = list (List) ← into a new an separate
List named Copy .

This is

How you copy a
List

.

MBB twitter :@NaifAlqahtaniEBBYoutube.com1.MWNLLT

List Algorithms:

BBB twitter : @NaifAlqahtani BBB twitter :@NaifAlqahtani8BBYoutube.com1.MWNLLT FEB youtube.com/.MWNLhT

•

• To swap two values there are two main ways.

z

2- fast
.
Clean.

"

*Not part of the syllabus

← store value of Listco]

← Replace ListCo] with the value in
List

← Replace List
with the value previously saved .

• Linear search a List :

z

BBM twitter : @NaifAlqahtani
FEB youtube.com/.MWNLhT

Tuples:

Sets:

BBB twitter : @NaifAlqahtani BBB twitter :@NaifAlqahtaniEBBYoutube.com1.MWNLLT FEB youtube.com/.MWNLhT

••

• Tuples , unlike lists , cannot be modified
• Tuples can be used to store constant variables

.

• Tuples are often used with round bracketsC)
.

• Tuples are separate by commas , just like lists
.

• Round bracket are optional . You can omit them .

• Tuples are used to return more than 1 variable in functions.

C l
,
2
, 3) ←

Both are valid tuples

1
,
2
,
3 ←

Bo
-

• Sets store unique values . No two values can be

the same in the same set.

• Sets are not ordered .

• You cannot access set values by indexing (No positions)
• Sets resemble math irrational sets. They both have the same

operations .
• Sets are faster at doing math operations because they do

not have ordered values
.

• If two values are the same in a set
, python will automatically

remove duplicates.

• Sets use curly brackets {3 or set

• Using setC) can convert a list into a set .

• Similar to lists and unlike tuples, set can be modified .
• This means sets are mutable

.
You can add & remove.

• To remove an element from sets you can .discardC) or.remove

→
•
discard) : no error if element does not exist.

→
•
remove : raises an error if element is not in the set .

BBB twitter : @NaifAlqahtani
FEB youtube.com/MWNLhT

Dictionaries:

BBB twitter : @NaiftlqahtaniBBB twitter :@NaifAIqahtaniEBBYoutube.com1.MWNLLT FEB youtube.com/.MWNLhT

•

→ Remember this drawing earlier
,
that represents Lists ?

T l l l l l l l l l T
'

O 1 2 13 / 4 5 16 7 8 9
'

• If you wanted to access a value in the list you would index

the list at the number position of the list.

eg . List[3] ← returns value in box 3
.

• Dictionaries allow you to table and give a name to each

element
.

T l l l l l l l l l T
,

"
"

id
" "

name
" "

year age
" /'sex" "

DOB
" /"height" 1 3 28

• This means that instead of using numbers to index
, you can use

the name that you gave that position.

Eg . Dictionary [
"

age
"] ← returns value in "

age
" box

• Box labels are called KEI .
• Box values are called values

.

• You cannot repeat a key in the same dictionary .

• Dictionaries may be called a map .

• You use curly brackets {}
.

• You use a colon : to separate keys and values .

• You use commas
,
to separate multiple key:value pairs .

• Colons e
.
is what decides if it is a set or a dictionary .

• Empty curly bracket {} is a dictionary.

• key:value pairs are not ordered
.

• Example :

ID= {
"

Ahmad
"
: 7

,

"

Naif
"

: 6.
"

Ali ":S}

ID ["Ati "] → 5

E I E ES
'

n. .

"
Ahmad

" " Naif ''
' Ali " MBB twitter : @NaifAlqahtanl

ID dictionary EEG youtube.com/.MWNLhT

Dictionary Operations:

How to use barcodes:

BBB twitter : @NaifAlqahtani BBB twitter :@NaifAlqahtaniEBBYoutube.com1.MWNLLT EEG youtube.com/.MWNLhT

•

• Calling a dictionary with a key that does not exist will raise an error.

• You can use
. get(key) to get values from a dictionary key

• You can add a second argument . get (key , default value) , this will

this will return defaultvalue if the provided key is not

in the dictionary.

•To modify a value :

ID["Ahmad"] = 9→ {
"

Ahmad
"
: 9

,

"

Naif
"

: 6
,

"

Ali ":S}

• To add a new key : value pair .

IDC" Khalid "3=2 → {
"

Ahmad
"
: 9

,

"

Naif
"

: 6
,

"

Ali ":S
,

"

Khalid " : 2}

• To remove a key : value pair, use . pop(key)

•
. pop C) returns the value of the key removed after removing it.

•
• pop raises an error if key does not exist

.

• Traversing / Looping dictionaries :

→ to loop through keys : for key in dictionary :

→ to loop through values : for value in dictionary.valuesC) :

•

• I added barcodes to programs I mentioned in these notes to

help make the notes more interactive & so you can try yourselves.

• I do not know if they will work as intended. (hopefully , they dom!)

• I also don't know for how long will they work for (hopefully , for many years)

①To modify ② To view output ①
,

Codey f or run code

②To rest,
code

-

③Downloaded

